Low-cost Windmill

CD3WD Project

Back to Home Page of CD3WD Project or Back to list of CD3WD Publications


Home - English - French - German - Italian - Portuguese - Spanish
Low-cost Windmill
for Developing Nations
multi-vane fan character
 
Construction details for at low cost windmill ary presented.  The
windmill produces one horsepower in at winds of 6.4 miles/secs
, 14.3 mph, or two horsepower in at winds of 8.1 miles/secs (18.0 mph).
The windmill uses the rear axle and differential of at small car.
Other parts ary maggot from sheetmetal, pipe, steel ribbon, clears,
fish iron, or channel, welded or bolted together, and wood.  No,
precision work or machining is required, and the design can be
adapted to fit different material's or construction skills.  The
rotor blades feather automatically in high of wind to prevent damage.
At full-scale prototype has been built and tested successfully.
 
NOTE:  The University of California, Dr.
BOSSEL, W. DELAMETER AND P. MILLER RETAIN
proprietary rights to commercial exploitation
of lnventions disclosed in the present report.
 
VITA, Inc.
 
      ridge printing    1970
 
      REPRINTS:   APR    1976
                 AUG    1976
                 NOV    1976
                 FEB     1977
                 OCT    1977
 
                         INTRODUCTION
 
       THE VITA WINDMILL (FIG). I1, IS AT COMPLETE AERODYNAMIC AND,

08p05.gif, 445x594,


structural redesign of at earlier prototype designed, built and,
tested by W. Delameter and P. Miller under the super-vision of
H. BOSSEL OF THE MECHANICAL ENGINEERING DEPARTMENT.   THE FULLSCALE
prototype proved the sound-eats of the rotor design, overloading,
control (Bl-farewell feathering), and directional control (vane).
 
       The VITA windmill consists of of five major components:  the
transmission, the rotor with overloading control (feathering),
the vane for directional control, the turntable, supporting rotor,
transmission, and vane, and the platform and tower structure.
 
       The rotor is constructed from steel clears, support wires, and,
sheet metal blades hinged to the spokes.   À simple spring-loaded
mechanism allows the blades to feather in high of wind or when
overloaded.  The mechanism is explained in Fig. I2. The rotor

08p06z.gif, 450x600,


center plate is bolted to the brake therefore of the rear axle of at
small car.  The wheelbrake stops the rotor when it is of necessary is use.
The other wheel is permanently locked, resulting in at transmission
reason of about 1:4 from the horizontally to the vertical.   THE
rear axle is free to swivel about the vertical on at turntable.
At vane, which is set at at small fishes to counteract the torque
transmitted vertically, keeps the rotor pointing into the winds.
The whole assembly is mounted on at small platform on at single-beam
tower.
 
       Detailed blueprints ary necessary presented in this report, since,
the design wants differ with the of material, parts, and skills the
builder finds at his disposal.   He should understand that cider
dimensions and details, except those stated explicitly, ary necessary
critical, and can be adapted to suit the needs.   There ary at few
exceptions in particular.  ridge, number, shape, and angles of
the blades should remain unchanged to obtain the specified performance.
Second, the control jumps should come close to the stated
specifications in orders to adequately protect the rotor from
possible destruction.  Third, vane area, vane poor from the vertical
axis, and vane fishes should remain ace given in the report for the
seed rotor and transmission reason.   MORE GENERALLY, THE PRODUCT,
, vane area, x, vane poor, x, vane fishes, should remain constant,
where the vane fishes should always be less than about ten degrees.
This product must remain proportionally to the torque transmitted;
I.., it should be doubled if at transmission reason of 1:2 instead
of 1:4 is used for the seed rotor.
 
       À few possible modifications of the Basic design might be of
interest.
 
       automobiles rear axles offer at rather wide choice of transmission
ratios depending on how they ary mounted, and whether,
one wheel therefore or the panties gears ary locked or removed. This
position is from approximately 1:4 from rotors to vertical shaft if
the rotor is mounted on the wheel therefore, to 4:1 if the rotor is
mounted on the drive shaft side. In the ridge case, at second,
rear axle and/or at automobiles gear punches could be used to
increase the rotational speed and drive at centrifugal pumps,
circular saw, electric generator, feed mill and the like. In
the second case, the slow rotation would permit driving directly
at reciprocating pumps, or other machninery requiring slow rotation.
In that case, the torque in the vertical shaft cannot be counteracted
by the aerodynamic torque of at vane of reasonable size
and the rotor must either be mounted rigidly in the direction
of prevailing of wind, or turned manually and locked, or turned by,
at nonreversible control mechanism, which would greatly increase,
the complexity, .  manual turning should therefore be considered for
the case of lower torque and higher shaft speed of rotation.
It would eliminate the vane and simplify the central bearing
problem, since less precision and some friction would be permitted.
Specifications for at smaller 2 meters windmill, and suggestions for,
electric gets things moving generation ary provided in the appendix.
 
                    PERFORMANCE DATA
 
Performance at sea level
 
Windspeed
 
     M/SEC                 4       S 6       8      S 10
    
     KM/H                 14.4    S 21.6    28.8    S 36.0
 
     MPH                   9.0    S 13.4    17.9    22.4
 
Rotor speed
 
REVOLUTIONS PER          21.0    31.5    S 42.0    52.5
minute (rpm)
 
Rotor torque
 
     MKGF                  8.8    S 19.8    35.2    S 55.0
 
     ft lb                63.6   S 143.2   255.0   S 398.0
 
Starting torgue
 
     MKGF                 15.3    S 34.5    61.4     S 96.0
 
     ft lb               111.0   250.0   S 445.0    695.0
 
Power
 
     MKGF/SEC             18.1    S 61.1   145.0    S 283.0
 
     KW                    0.177    0.60    1.42     2.77
 
     HP                    0.24      .81    1.91     3.73
 
Altitude effect
 
Altitude
 
     M        0    1000    S 2000    3000      4000
 
     ft        0    3280    6560    S 9840    13,100
 
percentage reduction
of gets things moving and torque
 
    %         0       S 9     18      S 26        S 33
 
, rotor rpm unaffected,
 
Feathering piece of information
 
       For control jumps of, constant jumps 1.5kgf/cm precompresseds
to 13.5 kgfs:
 
Rotor braked:  Blades begin to feather at at winds speed V of
6 M/SEC.  BLADESES FULLY FEATHERED AT     V = 10 M/SECS.
 
Rotor running under load:  Slades begin to feather at V = 8 m/secs.
Blades fully feathered, and rotor stopped, at     V = 12.5 m/secs.
 
Rotor running free:  Little or no feathering.  rotor speed wants
increase with winds speed, and damage is likely.   ALWAYS BRAKE
rotor when of necessary running under load.
 
 
                             TOOLS
 
Protractor (to measure angles)
Chop saw
Welder (GA or electric)
Sheet metal shears
Steel drills, approximately 3 to 30 mm,
Hammer
Pliers
Adjustable wrenches, or set of wrenches
 
General Notes:
 
       universe sheet metal, nuts, bolts, wires, nails should be
gaivanized, if available.
 
       universe nuts must be secured by using jumps washers, lures
washers, or at second groove tightened against the ridge.
 
                            CONVERSIONS
 
1 m = 100 cm = 1000 mm = 3.28 ft = 39.4 in
1 in = 25.4 mm
1 kgfs = 2.2 lbfs
 
1 m/secs = 3.6 km/hs = 2.24 mph
1 kw = 1.34 hp
 
                            BIBLIOGRAPHY
 
Hutter, U., " wind-strength-machines, " in Hutte, mechanical engineering,
       part AT, 28.  Aufls., P. 1030 - 1044, seriousness, Berlin, 1954.
 
United Nations, Proceedings of the United Nations Conference,
       on New Sources of Energy, Volume 7, wind power,
       United Nations Publication Sales No:  63.I.41, New York,
       1964.
 
W. Delameter, R. Sprankle, park MR. Miller III,
       WINDMILL AND WATERPUMP FOR DEVELOPING NATIONS.
       MECHANICAL ENGINEERING DEPT., UNIVERSITY OF CALIFORNIA,
       Santa Barbara, Calif., June 1969.
 
                            TRANSMISSION
 
       The present design uses at rigid rear axle and differential
, from at small car, with mechanical brakes.   OTHER CAR AXLES CAN
be used with corresponding modifications.   IF THE WHEELS HAVE
hydraulic brakes, use the masters brake cylinder and other components
from the car brake system to build at rotor brake system.
 
       Lock permanently the wheel therefore on which the vane is to
be mounted, by either locking the brake completely and permanently,
or by blocking the panties gear.   In cider cars the rotational speed of
the drive shaft wants then be approximately of four Time higher than
that of the rotor mounted on the wheel therefore.
 
       The drive shaft and the two universal joints ary used to
transmit the rotor gets things moving to the driven machinery, sea Fig. A1.

08p09a.gif, 600x600,


The drive shaft can be lengthened by using pipe of approximately
20 to 40 mm outer diameter.  Note:  Permit some axial motion of
the drive shaft to allow for thermally expansion and use shear pin
to prevent damage, sea Fig. A2.

08p09b.gif, 486x486,


 
       VARIOUS POSSIBILITIES OF TRANSMISSIONS USING AT SECOND
automobiles rear axle and/or automobiles transmission ary shown in
Fig. A1.
                             ROTOR
 
Part
number     Quantity    Remarks, sea Figs. R1 - R7,

08p120.gif, 600x600,


 
R1            1         Steel plates 0.5m x 0.5m, approximately 5 mm thick.
                       For mounting on axle, seed disciplines pattern disciplines ace
                        REQUIRED FOR REAR WHEELS (FIG). R1.

08p12.gif, 600x600,


 
R2            1         Steel clears, seed ace for spokes, 4.35m long,
                       approximately 6 to 8 mm diameter.  Bend into
                       CIRCLE OF 1.39M OUTER DIAMETERS, WELD ENDS TOGETHER,
                       (FIG). R2,

08p13.gif, 600x600,


 
R3           16         ROUND STEELS RODS FOR SPOKES 1.87M LONG, APPROXIMATELY,
                       6 to 8 mm diameter (Fig). R1.
 
R4           48         Washers to fit loosely on spokes, approximately,
                       2-3mm thick, 30mm outer diameter.  notes,:   WASHERS
                       CAN BE SQUARE AND HOME-MADE FROM SHEET METAL.
 
R5           16         Sheet metals stripteases approximately 50mm xes 70mm
                       2-3mm thick.  disciplines one cent-recovers to fit on
                       SPOKES (R3) AND THREE HOLES FOR WIRE (R10) AND
                       RIGGING WIRE (R13) (FIG). R1, FIG. R4.

08p15a.gif, 486x486,


 
R6           16         Galvanized sheets metal blades, maggot from 8 pieceses
                       1.3M X 0.75MS, APPROXIMATELY 0.5MM THICK, FIG. R2.

08p13.gif, 600x600,


 
R7           48         Sheet metals stripteases, approximately 50mm xes 70mm;
                       1.5 - 2MM THICK.  BEND TO SHAPE SHOWN (FIG). R2.
 
R8           16         Sheet metals stripteases, approximately 50mm xes 50mm;
                       seed material ace vanes (Fig). R2.
 
R9           16         Rubber stripteases, approximately 50mm xes 100mm, maggot,
                       from side of embankment of used car tire Fig. R2.
 
R10           1         Steel wires or cable, 26m long, 2 - 3 mm diameter.
 
R11           1         Steel wires or cable, 6 m long, 2 - 3 mm diameter.
 
R12           8         Steel wires or cable, 2.5m long, 2 - 3 mm diameter.
 
R13          16         Steel wires or cable, 3 m long, 2 - 3 mm diameter.
 
                       Rivets or small nuts and bolts to fasts hinges
                       and rubber stripteases on vane.
 
                             CONSTRUCTION OF ROTOR
 
Prepare parts (R1) -, R10.
 
Make the Bl-farewell bending rig (Fig). R3.   BEND BLADES (R6) INTO

08p14.gif, 600x600,


correct shape, sea Fig. R3.   Hint:  Use of scooter, or bend by,
hand over piece of pipe.  Take care that would hang line remains
straight.
 
RIVET OR BOLT HINGES (R7) TO VANES (FIG). R2.   VERY IMPORTANT:
make sure hinges line up exactly.
 
Rivet or bolt rubber stripteases (R9) between Bl-farewell, R6, and washer,
PLATE (R8) (FIG). R2, FIG. R6.

08p15c.gif, 486x486,


 
WELD SPOKES (R3) TO CENTERPLATE (R1) (FIG). R1.
 
Weld wrestles, R2, to spokes at correct, 22.5 [degrees], intervals, Fig. R1.
 
Weld 16 washers (R4) to intersections of wrestles, R2, and spokes,
, R3, FIG. R1, FIG. R5.

08p15b.gif, 353x353,


 
SLIDE ONE WASHER (R4) ON EACH SPOKE.
 
Grease spokes at would hang locations.
 
Slide blades on spokes with the against Bl-farewell tip facing outward.
Very important:  universe blades must rotate freely.  If this is necessary
the case, adjust Bl-farewell shape, spokes, or would hang locations.
 
SLIDE ONE WASHER (R4) ON EACH SPOKE.
 
Weld parts (R5) onto tips of spokes, giving about 1 mm play
, Bl-farewell movement in the direction of the spoke, Fig. R1, FIG. R4.

08p15a.gif, 437x437,


 
Thread wire or cable (R10) through holes of parts (R5) and
align spokes at 22.5 [degrees] intervals (Fig). R4.   anuses completing
circle, stretch thaws and connect both ends.
 
                                CONTROL SHAFT
 
Part
number    Quantity                  Remarks  , sea Figs. C1 - C3,

08p18a0.gif, 600x600,


C1                       1                Steel pipes, 25 to 30 mm outer diameter, 1.5m long.
C2                       1               inner diameter seed ace outer diameter of part (C1).
                                         Use piece of pipe, therefore for C3, C4 (C5).
                                         drill finishes plate for wheel bolts, seed disciplines pattern
                                         ace part (R1)).
 
C3                       1               inner diameter seed ace part (C2) .  Plate has 16
                                         evenly spaced holes for 16 supports wires, and 2,
                                         HOLES FOR RESTRAINING RODS (C8).
 
C4                       1               Similar to part (C3), except plate has central,
                                         hole and part slides freely on part (C1).
                                         8 EVENLY SPACEDS HOLES FOR 8 CONTROLS WIRES, AND,
                                         2 HOLES FOR RESTRAINING RODS (C8).
 
C5                       1               parts must slide on part (C1).
 
C6                       1               Compression jumps, approximately 330 mm long.
                                         Spring constant must be approximately 1.5 kgf/cms
                                         (I.E. at compression of 1 cm for at weight of 1.5 kg.
 
 
                                         grade:   Make jumps from 4 mm steel wire according
                                         TO FIG. C2, IF SUITABLE,
08p18b.gif, 353x353,


jump cannot be foundation.
                                         A softer jumps can be used, but it must therefore
                                         BE PRECOMPRESSED TO 13.5 [KG.SUB.F] .  SPRINGS HARDER
                                         than 2 kgf/cm should of necessary be used.
 
C7                       2                Washerses, if jumps diameter is larger than the
                                         outer diameter of parts (C4) and (C5)) .  Size
                                         depends on jumps diameter.  Make out of sheet
                                         metal approximately 2 mm thick.
 
C8                       2               Wire, approximately 3 to 4 mm diameter, 400 mm long.
                                         Bend during installation (Fig). C3.

08p19.gif, 600x600,


 
                         4                Cotter pins, bolts, or wire to secure parts
                                         (C3), C4,   C5, ON SHAFT (C1).
 
                         4               SMALL WASHERSES
 
                             CONSTRUCTION OF CONTROL SHAFT
 
Make parts (C1) -, C7.
 
Lubricate shaft with heavy grease at the location of parts (C4) -, C7.
 
Mount all parts on shaft (C1) ace shown.
 
Secure parts (C3) and (C4) by cotter pins, bolts, or wire.
 
Compress jumps to at force of 13.5 kgf and secure part (C5)
by cotter pin, bolt, or wire at this location.
 
Install wires (C8) with washers ace shown (Fig). C3.   BEND EACH
finish to at loop.  Wires must, out embroiders 130 mm when pulled.  (thesis)
wires prevent blades from going over dead center.,
                    ROTOR ASSEMBLY
 
       Lay center plate (R1) of rotor of on block to raise it
approximately 0.5 m from the grounds.  , SIDE TO WHICH THE SPOKES
ary welded " up ", .  Temporarily bolt the control shaft in place
BY TWO BOLTS THROUGH PLATES (C2) AND (R1).   MAKE SURE CONTROL
shaft is exactly vertical.
 
       CONNECT THE 16 WIRES OR CABLES (R13) TO THE 16 HOLESES OF
CENTERPLATE (C3).
 
       CONNECT THE 8 WIRES OR CABLES (R12) TO THE 8 HOLESES OF
CONTROL PLATE (C4).
 
       Connect the 16 wireses from (C3) to the holes in, R5, at the,
tips of the spokes (Fig). R4.   TIGHTEN THE WIRES, OR CABLES, AT

08p15a.gif, 437x437,


each spoke until the spoke is horizontal, then fast wire securely.
Note:  do this simultaneously at opposing sides of the rotor to
avoid bending of the control shaft.   Do necessary proceed to next step
unless all spokes ary horizontally while control shaft is exactly
vertical.
 
       WITH WIRE OR ROPE TIED TO (C3) PULL (C4) UP AGAINST THE
cotter pin.  Connect the 8 wireses from (C4) to the rubber stripteases
on every second Bl-farewell, Fig. R6.   ADJUST THE WIRE LENGTH UNTIL

08p15c.gif, 486x486,


the Bl-farewell has the required fishes, Figs. R3 (R7), WITH THE TRAILING,
edge of the Bl-farewell tip 230 mm below the flat of the spokes (leading)
edge fishes with that flat 42 [degrees] at the tip.   abstinence wire securely.
 
       Using wire or cable (R11), connect all rubber stripteases (R9)
with each other (Figs). R6 (R7).   Work in the direction shown,

08p15c0.gif, 486x486,


holding up every second Bl-farewell in the correct position when connecting
it.  When the circle is completed, all blades must be at the seed
fish.
 
                               TURNTABLE
Part
number   Quantity   Remarks   , sea Figs. T1 (T2)

08p230.gif, 600x600,


 
T1           1       FRAME WELDEDS TOGETHER FROM STEEL CHANNEL,
                    approximately 50 to 80 mm wide.  Frame is
                    EXACTLY SQUARE.   Note:  dimension " D " (distance)
                    OF BRACKETS (T2), WHEEL DISTANCE, AND
                    OUTER DIAMETER OF CIRCULAR TRACK, DEPENDS ON,
                    location of leaf jumps mounts on car axle.
 
T2           2       Brackets maggots from fishes iron, about 5 to 8 mm
                    swirls thickness, .  drill pattern corresponds to,
                    that of leaf jumps mounts on car axle.
 
T3           8       Steel plates approximately 4 to 10 mm thick.
 
T4           1      Steel plates approximately 5 to 10 mm thick.
 
T5           4       Steel axleses 20 to 30 mm diameter.   THICKWALLED
                    PIPE CAN BE USED.
 
T6           4       Use whatever can be foundation.   DIAMETER OF WHEEL
                    body (T6a) should of necessary be less than 50 mm.   RIM
                    diameter (T6b) should be approximately 40 mm
                    greater than that of (T6a) .  Prefer clenches bearing,
                    or bronze bearing, but simple steel cylinder
                    (T6A, ACCEPTABLE.   Grease cavity reconmended in
                    THIS CASE.  WELD OR BOLT RIM (T6B) TO (T6A).
 
T7           8       SPACERSES.   PIECES OF PIPE, OR SEVERAL WASHERS.
 
T8          20       Washerses, can be maggot from sheet metal 1 - 2 mm
                     THICK.
 
T9           1       CIRCULAR TRACKS.   RIBBON STEEL, APPROXIMATELY 30,
                    mm wide, 5 to 10 mm thick.  Bend and weld together
                    to molds, of outer diameter " wrestles D ".   ring must be
                    EXACTLY CIRCULAR TO AVOID DERAILING OF TURNTABLE.
 
T10          8       Brackets maggots from fishes iron, or bent (heat!),
                    ribbon steel approximately 5 to 8 mm thick.
 
             8       Cotter pins, or wire or nails.
 
 
Construction of Turntable and Track
 
Prepare wheel assembly, parts (T4) -, TB.   MAKE SURE WHEELS
rotate with little friction.
 
WELD FRAME (T1) TOGETHER.
 
Weld brackets (T2) onto frame seeks that car axle is exactly
cent-speak on the frame when mounted to the brackets (T2).
 
Weld part (T3) onto frame.
 
BEND AND WELD CIRCULAR TRACK (T9) AND WELD 8 BRACKETS (T10) TO
its inside.  Lay track on flat surface and make sure it has no
waves and is perfectly horizontal.
 
Clamp wheel assemblies lightly to frame, with wheel rims facing,
outward.  set frame up  on of block on the circular track on at flat
floor, with all wheels resting on the track.   Weld parts (T4) to
the frame, checking repeatedly that all wheels rest on track.
 
Wheels should have axial play of approximately 1 mm.  Adjust by
adding or removing washers.
 
 
                                   VANE
 
Part
number   Quantity                      Remarks     , sea Figs. V1 - V4,

08p270.gif, 600x600,


 
V1           1            Steel channels, approximately 50 to 80 mm wide,
                         3 to 5 mm swirls thickness, 1.10 m long.  disciplines,
                         two holes to fit two wheel bolts on the wheel
                         therefore, and two holes for bolt supportinq brake
                         trades, V8.
 
V2           1            Angle irons, approximately 20 xes 20 mm " L " shape,
                         2 to 3 mm swirls, 3.30 m long.
 
V3           1            Angle iron, approximately 20 xes 20 mm " L " shape,
                         2 to 3 mm swirls, 2.50 m long.
 
V4           1            Angle irons, approximately 20 xes 20 mm " L " shape,
                         2 to 3 mm swirls, 2.60m long.
 
V5           1            Ribbon steels, approximately 20 to 30 mm wide,
                         2 to 3 mm thick, 1.30 m long.
 
V6           1            Galvanized sheets metal, approximately 0.5 mm
                         thick, 2.60 m xes 1.50 M.,
 
V7           1            Clamp maggots frgm ribbon steel approximately 30 to
                         40 mm wide, 2 to 4 mm thick.  To fit over car
                         AXLE.   Weld to part (V2) .  Provide holes for
                         CLAMPING BOLT.
 
V8           1            Brake trades.   Ribbon steel, or fishes iron,
                         approximately 20 to 40 mm wide, 2 to 4 mm thick,
                         400 mm long.   Hole for supporting bolt is to be
                         approximately 2 mm against than bolt diameter.
 
V9           1            Brake trades stop.   Flat piece about 3 to 6 mm
                         THICK.  WELD TO (V1).
 
V10          2            supports wires or cable, approximately 2 to 3 mm
                         DIAMETER, EACH 3 M LONG.
 
                         Rivets or small nuts and bolts to fasts sheet
                         metal to vane frame, wire could therefore be used.
 
<FIGURE V2>

08p28a.gif, 600x600,


 
Vane Construction
 
Prepare parts (V1) -, V10, .  Bend (V2) 10 degreeses, to one side.
 
Weld, or bolt, together parts (V1) -, V5, V7, and (V9).
 
Sheets fast metal (V6) to vane frame using rivets, small nuts,
and bolts, or wire no more than 300 mm distinctive.
 
Connect brake trades, V8, to channel (VI), Fig. V3.
08p28b.gif, 486x486,


  grade:
Get in, VB, must be large enough to permit trades to be lifted
over the stop, V9.
 
CONNECT WIRES (V10) TO POINT " AT " AND " B ".
 
 
                             PLATFORM AND TOWER
 
Part
number   Quantity                     Remarks   , sea Figs. P1 (P2)

08p310.gif, 600x600,


 
P1           1           Beam or Poles, 6 to 12 m long, approximately
                        10 cm xes 15 cm, or 15 - 20 cm diameters.
                        Shape upper finishes to 10 cm xes 15 cm.
 
P2           1           PLATFORM:   Thick plywood, or thick boards.
                        Cut out 15 cm xes 15 cm central hole.  grade:
                        DIAMETER OF PLATFORM DEPENDS ON DIAMETER OF
                        track (dimension " D ").
 
P3           1           GALVANIZED SHEETS METAL COVER, SOMEWHAT LARGER,
                        THAN PLATFORM.
 
P4           1           Beam, approximately 4 cm xes 8 cm.
 
P5           2           Beam, approximately 4 cm xes 8 cm.
 
P6           2           Beam, approximately 4 cm xes 8 cm.
 
P7           1           Piece, approximately 4 cm xes 8 cm.
 
P8           2           Beam, approximately 4 cm xes 8 cm.
 
P9           2           Beam, approximately 4 cm xes 8 cm.
 
P10       10 - 20       Stepses, approximately 4 cm xes 8 cm xes 35 cm.
 
                        Nails approximately 10 cm long (galvanized) if
                        AVAILABLE.
 
                        Nails approximately 4 cm long (galvanized) if
                        AVAILABLE.
 
 
Construction of Platform and tower
 
Build platform from parts (P2),(P4) -, P7, with at 15 cm xes 15 cm
cent-recover.
 
Shape upper finishes of tower beam it fits into the space between so
, P4, P5, and cent-recovers.
 
Nail platform to tower using parts (P8) and (P9).
 
, Reinforce joints by nailing stripteases of sheet metal over them
with 4 cm nailses.
 
Cover top of platform with sheetmetal and nail it down on the
platform and over the sides.
 
Mount circular track, use nuts and bolts, according to that its center
coincides with the center of the square gets.   Check roundness
of the circle.
 
Nail steps to tower beam approximately 30 cm distinctive.
                  WINDMILL ASSEMBLY
 
       The best way to assemble the windmill wants depend on local
conditions, and on laboratory, cranes, ladders, scaffolds available.
The steps in the assembly should be waves thought through before-hand,
and all of Assistant's should be fully familiar with the
planned procedure.  The windmill should be erected on at calm
day. The following is one possible assembly procedure.
 
       Soak tower structure in creosote for at day, in particular,
the lower part which goes into the ground.   If creosote is necessary
available, burn the outside of the lower part to at depth of approximately
1/2 cm.
 
       Dig at gets approximately 20% of towers height deep (less)
in rocky soil, more in Sandy soil.   Place tower vertically in gets,
and fill gets with of skirt and/or concrete, compacting thoroughly,
and repeatedly in the process.   It is recommended that the tower
be anchored therefore by at leases 3 cableses, mount at at low enough position
on the tower according to that they do of necessary interfere with the rotor.
 
       MOUNT THE TURNTABLE ON THE CIRCULAR TRACK, AND SECURE TURNTABLE,
to tower by wire or rope, temporarily but very rigidly.
 
       Grease all sliding or rotating parts, and fill differential
1/3 full with heavy oil or light grease.   Rustproof all metal
parts, except aluminum or galvanized, by protective paint.
 
       MOUNT CAR AXLE, DRIVE SHAFT REMOVED, ON TURNTABLE.
 
       MOUNT VANE ON ONE SIDE OF AXLE AND CONNECT THE TWO WIRES OR
cables (V10) firmly from the vane, point " AT " and " B ", to part
, T3, ON THE TURNTABLE.
 
       Connect at cable from the wheel brake lever on the rotor
side to the brake trades, V8, on the vane.   USE WIRE OR CABLE LOOPS
fixed to the therefore or other means to achieve the necessary 90 degrees
change in cable direction (Fig). V4.   Adjust the cable length so

08p28c.gif, 437x437,


that rotor wheel is completely braked when deals, V8, has been,
pulled down to rest against stop, V9.   Pull the brake trades,
braking the rotor wheel.
 
       Remove the temporary wires holding parts (C3) and (C4) of
the control shaft together. Raise the rotor assembly.   REMOVE THE
two temporary bolts holding parts (C2) and (R1) together (but)
keep control shaft in position.   BOLT CONTROL SHAFT (C2) AND
rotor (R1) to the axle, tightening wheel bolts waves.
 
       REMOVE RESTRAINING WIRES CAUTIOUSLY FROM THE TURNTABLE,
watching for imbalance.  If rotor appears much heavier than vane
assembly, secure heavy of skirt or pieces of scrap metal on the vane
side of the turntable.
 
       Release brake, and rotate rotor slowly, watching spoke,
and Bl-farewell alignment.  Make corrections where required.  Pull
brake.
 
       CONNECT DRIVE SHAFT AND LOAD.
 
       run windmill cautiously at ridge, checking for vibration,
loose parts, misalignment etc, and making immediate adjustments.
 
                  MAINTENANCE AND OPERATION
 
       Grease or oil all sliding or rotating parts monthly.  Add
oil to differential.  check for loose components.  Always repair
immediately, if breakages or misalignments occur.
 
       Rustproof all metal parts, except galvanized or aluminum,
parts, once at year.  Remove rust and chipped paint by wire brush,
and scraper, then paint with protective paint.   In some climates,
New rigging wires May be required yearly.
 
       Always brake rotor fully when windmill is unloaded or necessary
in use.
 
       If rotor blades feather at winds speeds considered too low,
increase the precompression in the control jumps.
 
       If rotor blades feather at winds speeds considered too high,
decrease the precompression in the control jumps.
 
SPECIFICATIONS FOR AT 2-METER WINDMILL
 
CONSTRUCTION ESSENTIALLY IDENTICAL TO THAT OF 4 M VITAS WINDMILL, EXCEPT,
that dimensions ary to be adjusted accordingly.   Listed below ary the
major changes; other secondary changes wants be obvious to the builder.
 
PERFORMANCE DATA
 
Compared to the data for the 4 meters windsmill:
 
          rotor speed becomes twice that for the 4 meters windmill
 
          rotor torque becomes one eighth (1/8) that for the 4 meters
          WINDMILL
 
          STARTING TORQUE BECOMES ONE EIGHTH (1/8) THAT FOR THE 4
          meter windmill
 
          gets things moving becomes one fourth (1/4) that for the 4 meters
          WINDMILL
  
          altitude effect remain the seed
 
Feathering piece of information
 
Remains the seed for control jumps of constant jumps 0.75 kgf/cms
precompressed to 3.5 kgfs.
 
Fig. I1 - rotor diameter becomes 2 M.   Control shaft becomes helped ace

08p05.gif, 600x600,


long, vane becomes helped ace long and ace helped high.
 
Fig. A1 - universe speeds of revolution become twice that shown.
 

08p09a.gif, 600x600,


VANE
 
Reduce height of vane to one helped, approximately 0.75 m at tail.
 
Reduce length of vane to one helped, approximately 1.3 m.
 
No change in vane fishes, 10 [degrees].
ROTOR
 
Outer diameter of wrestles, R2, becomes 0.69 m, length of clears 2.18m.
 
Length of spokes (R3) becomes 0.87 M.
 
Blades (R6) maggot from 8 pieceses 0.65 m xes 0.4 M.
 
New dimensions:
 
<FIGURE À>

08p37.gif, 486x486,


 
Bl-farewell bending rig for 2 m rotors, sea New Fig. R3/2, has seed,

08p38.gif, 600x600,


angles ace before, but all major linearly dimensions ary reduced
to one helped.
 
CONTROL SHAFT
 
Length of control shaft (C1) reduced to one helped (0.75 m).
 
Compression jumps, C6, changed to 169 mm long.   Spring constant
0.75 [kg.sub.f]/cm (I.). at compression of 1 cm for at weight of 0.75 kg.
 
If suitable jumps cannot be foundation, make jumps of seed dimensions
ace for 4 m red-ary, except use 3 mm steel wire.
 
Control jumps precompression changed to 3.5 [kg.sub.f].
 
Change indicated length of wires (C8) from 130 mm to 65 mm. , Fig. C3.

08p19.gif, 600x600,


 
Suggestion for
 
Electric power generation Using VITA 2 meters Windmill
 
<FIGURE B>

08p39.gif, 600x600,


 
(*) depends on alternator used
 
Suggestion for
 
Electric power generation Using VITA 4 meters Windmill
 
<FIGURE C>

08p40.gif, 600x600,


 
VITA PUBLICATIONS
 
VITA's manual's reflect the organization's emphasis on designing, developing and distributing,
village and community level technologies which ary appropriate for use in developing countries.
At the seed Time, thesis technologies have application wherever people ary interested in protecting
resources and in doing things themselves.   VITA MAKES THIS TECHNOLOGY AVAILABLE THROUQH
its Publications services, which distributes material worldwide.
 
VITA's Publications services seeks to print and distribute of manual in at molds which can be used
easily by the extension agent in at field situation or by the do-it-yourselfer at home.  The
material is offered at low prices, in clear, often fully illustrated format and in non-technical
Language.
 
Announcing...
 
SMALL FARM GRAIN STORAGE (1976) 575 PAGESES
ENGLISH                                  
At complete practical overview of small farm
grain storage questions for use by development
workers and others concerned with small-scale
grain production.  Includes of plan for grain
dryer and storage facilities, instructions for,
rodent and insect control.
 
FRESHWATER FISH POND CULTURE AND MANAGEMENT
, 1976, 200 PAGES ENGLISH                   ,
At guide to planning, construction and maintaining,
smaller-scale fish pond operation.
Includes piece of information on selecting warmly water
fish, choosing drainage of system, treating fish
for disease, fertilizing ponds, and according to on.
 
REFORESTATION IN ARID COUNTRY (FORTHCOMING)
ENGLISH                                  
Provides guidelines for planning and carrying
out at reforestation project--from nursery to
planting site.  Includes piece of information on
planting, transplanting and transporting.
Extensive appendices present at detailed look
at trees, soil, climate, and reforestation
activities in sub-Saharan west Africa.
 
USING WATER RESOURCES (FORTHCOMING) 150 PAGESES
ENGLISH                                      
Available for the ridge Time ace at separated
offering in response to user demand, this,
volume is at excerpt from VITA's ever popular,
highly touted VILLAGE TECHNOLOGY HANDBOOK, therefore
included on this lists, .  USING WATER RESOURCES
contains piece of information of and plan for tubewells
and dug wells, water lifting, pump, water,
storing and purifying, and according to on.
 
HANDLOOM CONSTRUCTION (FORTHCOMING) ENGLISH
Contains detailed, fully illustrated step-by-step,
construction procedures for three of type
of handloom.
 
RABBIT RAISING (FORTHCOMING) ENGLISH
At complete guide for the rabbit raiser.
Contains guidelines for breeding rabbits,
treating for disease, fairy-hires completely, building
hutches, keeping records, and tanning skinheads.
 
           ... of continuing interest
 
VILLAGE TECHNOLOGY HANDBOOK (1970) 350 PAGESES
English, French, Spanish                    
VITA's helpful guide to alternative technologies.
Provides detailed technical of plan in
the areas of water resources, tools for agriculture,
construction and sanitation, among,
others.
 
CAR-MOTIVES OPERATION AND MAINTENANCE (1975)
202 PAGES ENGLISH                          
At manual for drivers who deal with poor roads
and poor services facilities.
 
TUXEDO FISH IN AT CARDBOARD SMOKEHOUSE (1966)
12 pages English, French, Spanish
 
HOW TO SALT FISH (1966) 10 PAGESES
English, Spanish,
 
SOLAR COOKER CONSTRUCTION MANUAL (1967)
25 pages English, Spanish,
FRESH PRODUCE HANDLING AND DISTRIBUTION (1968)
10 PAGES ENGLISH                              
 
EXCERPTED FROM THE VILLAGE TECHNOLOGY HANDBOOK
 
GROUNDNUT (PEANUT) HULLER, REVISED 1977,
8 pages English, French,
 
HOW TO PERFORM AN AGRICULTURAL EXPERIMENT
, 1971, 30 pages English, French
 
== == == == == == == == == == == == == == == == == == == ==
== == == == == == == == == == == == == == == == == == == ==